Abstract
The interaction of Lewis acids and bases in both classical Lewis adducts and frustrated Lewis pairs (FLPs) is investigated to elucidate the role that London dispersion plays in different situations. The analysis comprises 14 different adducts between tris(pentafluorophenyl)borane and a series of phosphines, carbenes, and amines with various substituents, differing in both steric and electronic properties. The domain-based local pair natural orbital coupled-cluster (DLPNO-CCSD(T)) method is used in conjunction with the recently introduced local energy decomposition (LED) analysis to obtain state-of-the-art dissociation energies and, at the same time, a clear-cut definition of the London dispersion component of the interaction, with the ultimate goal of aiding in the development of designing principles for acid/base pairs with well-defined bonding features and reactivity. In agreement with previous DFT investigations, it is found that the London dispersion dominates the interaction energy in FLPs, and is also remarkably strong in Lewis adducts. In these latter systems, its magnitude can be easily modulated by modifying the polarizability of the substituents on the basic center, which is consistent with the recently introduced concept of dispersion energy donors. By counteracting the destabilizing energy contribution associated with the deformation of the monomers, the London dispersion drives the stability of many Lewis adducts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.