Abstract
A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.
Highlights
Nuclear shape changes are present in a broad range of pathologies
To quantify the accuracy of the detection algorithm, the method was compared to three independent GTs of manually delineated HDF-NCP nuclei, using an integrated performance error, based on the average of average Hausdorff distance (AHD) and non-similarity index (NSI) as described in the M&M section
Dysmorphic nuclei are characteristic for a wide range of pathologies such as cancer, viral infections and nuclear envelopathies
Summary
Nuclear shape changes are present in a broad range of pathologies. Depending on the origin and cell type, nuclei of cancer cells display strikingly different sizes and overt shape alterations such as grooves, folds or lobes, as compared to normal cells [1,2]. Numerous disorders demonstrate subtler morphological aberrations such as invaginations or protrusions. These protrusions are often referred to as nuclear blebs and they are characteristic for diseases of the nuclear lamina, i.e., laminopathies [3,4]. In various laminopathies, these blebs represent weak spots, which can sometimes rupture causing illegitimate exchange of nuclear and cytoplasmic proteins [5,6,7,8]. Bleb formation has been observed in viral infections, where it is considered
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have