Abstract
Purpose The asymmetry of the velocity profile caused by geometric deformation, complex turbulent motion and other factors must be considered to effectively use the flowmeter on any section. This study aims to better capture the flow field information and establish a model to predict the profile velocity, we take the classical double elbow as the research object and propose to divide the flow field into three categories with certain common characteristics. Design/methodology/approach The deep learning method is used to establish the model of multipath linear velocity fitting profile average velocity. A total of 480 groups of data are taken for training and validation, with ten integer velocity flow fields from 1 m/s to 10 m/s. Finally, accuracy research with relative error as standard is carried out. Findings The numerical experiment yielded the following promising results: the maximum relative error is approximately 1%, and in the majority of cases, the relative error is significantly lower than 1%. These results demonstrate that it surpasses the classical optimization algorithm Equal Tab (5%) and the traditional artificial neural network (3%) in the same scenario. In contrast with the previous research on a fixed profile, we focus on all the velocity profiles of a certain length for the first time, which can expand the application scope of a multipath ultrasonic flowmeter and promote the research on flow measurement in any section. Originality/value This work proposes to divide the flow field of double elbow into three categories with certain common characteristics to better capture the flow field information and establish a model to predict the profile velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.