Abstract
• The established model could reflect the impact of non-point source pollution on water quality. • The hybrid model performed very well in the water quality prediction. • The hybrid model improved the accuracy of extreme water quality prediction. Non-point source (NPS) pollution is an important factor affecting the quality of water environment. In recent years, a large number of online water quality monitoring stations have been used to obtain continuous time series water quality monitoring data. These data provide the necessary basis for the application of deep learning methods in water quality prediction. However, the prediction accuracy of traditional deep learning methods is low, especially in predicting the water quality with NPS pollution. Aiming to address this limitation, a novel deep learning model named SOD-VGG-LSTM with the simulation-observation difference (SOD) modular based on physical process, the visual geometry (VGG) modular reflecting spatial characteristics, and the long short-term memory (LSTM) modular based on deep learning method was developed to improve the accuracy of the water quality prediction with NPS pollution. The established model can overcome the problem that mechanism models can not predict the changes of water quality on the hourly or minute time scale. The model was applied in Lijiang River watershed. Experimental results indicated that the proposed model had the highest accuracy in the extreme value prediction compared with the mechanism model and LSTM model. The maximum relative errors between the predicted and observed results for DO, COD Mn , NH 3 -N, and TP were 8.47%, 19.76%, 24.1%, and 35.4%, respectively. The model evaluation demonstrated that the established SOD-VGG-LSTM model achieved superior computational performance compared to Auto Regression Integreate Moving Average model (ARIMA), Support Vector Regression model (SVR), and Recurrent Neural Network model (RNN). The evaluation results showed that SOD-VGG-LSTM achieved 3.2–39.3% higher R 2 than ARIMA, SVR and RNN. The proposed model can provide a new method for water quality prediction with NPS pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.