Abstract

Global elevation datasets such as the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) are the best available terrain data in many parts of the world. Consequently, SRTM is widely used for understanding the risk of coastal inundation due to climate change-induced sea level rise. However, SRTM elevations are prone to error, giving rise to uncertainty in the quality of the inundation projections. This study investigated the error propagation model for the Shatt al-Arab River region (SARR) to understand the impact of DEM error on an inundation model in this sensitive, low-lying coastal region. The analysis involved three stages. First, a multiple regression model, parameterized from the Mississippi River delta region, was used to generate an expected DEM error surface for the SARR. This surface was subtracted from the SRTM DEM for the SARR to adjust it. Second, residuals from this model were simulated for the SARR. Modelled residuals were subtracted from the adjusted SRTM to produce 50 DEM realizations capturing potential elevation variation. Third, the DEM realizations were each used in a geospatial “bathtub” inundation model to estimate flooding area in the region given 1 m of sea level rise. Across all realizations, the area predicted to flood covered about 50% of the entire region, while predicted flooding using the raw SRTM covered only about 28%, indicating substantial underprediction of the affected area when error was not accounted for. This study can be an applicable approach within such environments worldwide.

Highlights

  • Sea level rise (SLR) varies regionally around the world: in the Persian (Arabian) Gulf, the rate is similar to that in south Asia, which is 2.2 ± 0.5 mm/year [1,2]

  • Hydrology plays a key role in understanding the ecology of these environments: predicting and managing changes in coastal environments requires an understanding of the linkages between estuarine wetland ecology and hydrology

  • We consider that the use of the Mississippi River Delta region (MRDR) error model in Shatt al-Arab River region (SARR) is justified for several reasons: 1

Read more

Summary

Introduction

Sea level rise (SLR) varies regionally around the world: in the Persian (Arabian) Gulf, the rate is similar to that in south Asia, which is 2.2 ± 0.5 mm/year [1,2]. Gulf experiences high temperatures in the summer, the mean sea level is lower in winter and higher in the summer with an inter-annual range of 26 cm [1,3]. Tidal wetlands and nearby low elevation areas are extremely sensitive to even slight changes in elevation [4] or sea level. The long-term effects of climate change, especially sea level rise and human hydraulic modification of water flow, are critical for these systems [5].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call