Abstract

The Shuttle Radar Topography Mission (SRTM) collected elevation data over 80% of earth's land area during an 11‐day Space Shuttle mission. With a horizontal resolution of 3 arc sec, SRTM represents the best quality, freely available digital elevation models (DEMs) worldwide. Since the SRTM elevation data are unedited, they contain occasional voids, or gaps, where the terrain lay in the radar beam's shadow or in areas of extremely low radar backscatter, such as sea, dams, lakes and virtually any water‐covered surface. In contrast to the short duration of the SRTM mission, the ongoing Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is continuously collecting elevation information with a horizontal resolution of 15 m. In this paper we compared DEM products created from SRTM data with respective products created from ASTER stereo‐pairs. The study areas were located in Crete, Greece. Absolute DEMs produced photogrammetricaly from ASTER using differentially corrected GPS measurements provided the benchmark to infer vertical and planimetric accuracy of the 3 arc sec finished SRTM product. Spatial filters were used to detect and remove the voids, as well as to interpolate the missing values in DEMs. Comparison between SRTM‐ and ASTER‐derived DEMs allowed a qualitative assessment of the horizontal and vertical component of the error, while statistical measures were used to estimate their vertical accuracy. Elevation difference between SRTM and ASTER products was evaluated using the root mean square error (RMSE), which was found to be less than 50 m.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.