Abstract
In the field of wildfire risk management the so-called burn probability maps (BPMs) are increasingly used with the aim of estimating the probability of each point of a landscape to be burned under certain environmental conditions. Such BPMs are usually computed through the explicit simulation of thousands of fires using fast and accurate models. However, even adopting the most optimized algorithms, the building of simulation-based BPMs for large areas results in a highly intensive computational process that makes mandatory the use of high performance computing. In this paper, General-Purpose Computation with Graphics Processing Units (GPGPU) is applied, in conjunction with a wildfire simulation model based on the Cellular Automata approach, to the process of BPM building. Using three different GPGPU devices, the paper illustrates several implementation strategies to speedup the overall mapping process and discusses some numerical results obtained on a real landscape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.