Abstract
The magnitude of the real-time digital signal processing challenge attached to large radio astronomical antenna arrays motivates use of high performance computing (HPC) systems. The need for high power efficiency (performance per watt) at remote observatory sites parallels that in HPC broadly, where efficiency is an emerging critical metric. We investigate how the performance per watt of graphics processing units (GPUs) is affected by temperature, core clock frequency and voltage. Our results highlight how the underlying physical processes that govern transistor operation affect power efficiency. In particular, we show experimentally that GPU power consumption grows non-linearly with both temperature and supply voltage, as predicted by physical transistor models. We show lowering GPU supply voltage and increasing clock frequency while maintaining a low die temperature increases the power efficiency of an NVIDIA K20 GPU by up to 37-48% over default settings when running xGPU, a compute-bound code used in radio astronomy. We discuss how temperature-aware power models could be used to reduce power consumption for future HPC installations. Automatic temperature-aware and application-dependent voltage and frequency scaling (T-DVFS and A-DVFS) may provide a mechanism to achieve better power efficiency for a wider range of codes running on GPUs
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.