Abstract
This paper presents an analysis of ignition and burn risk due to wildfire in a region of Ontario, Canada using a methodology which is applicable to the entire boreal forest region. A generalized additive model was employed to obtain ignition risk probabilities and a burn probability map using only historic ignition and fire area data. Constructing fire shapes according to an accurate physical model for fire spread, using a fuel map and realistic weather scenarios is possible with the Prometheus fire growth simulation model. Thus, we applied the Burn‐P3 implementation of Prometheus to construct a more accurate burn probability map. The fuel map for the study region was verified and corrected. Burn‐P3 simulations were run under the settings (related to weather) recommended in the software documentation and were found to be fairly robust to errors in the fuel map, but simulated fire sizes were substantially larger than those observed in the historic record. By adjusting the input parameters to reflect suppression effects, we obtained a model which gives more appropriate fire sizes. The resulting burn probability map suggests that risk of fire in the study area is much lower than what is predicted by Burn‐P3 under its recommended settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.