Abstract
Skeletonization is an effective method to accelerate the solution of linear systems with multiple right-hand sides (RHSs) by exploiting the rank-deficiency property of the RHS matrix. However, when the size of the RHS matrix is very large, the memory requirement would become a bottleneck of the skeletonization technique. To reduce the memory cost, this letter presents the theoretical basis of how to find out the skeleton basis functions (SBFs) to construct the skeleton RHS matrix more efficiently from a purely algebraic point of view and proposes a multilevel algorithm to figure out the SBFs for solving the integral equations with multiple RHSs. The numerical results show that the proposed method accelerates the solution of the volume–surface integral equation with multiple RHSs and reduces the memory cost significantly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have