Abstract
The oil and gas industry has an increasingly large demand for high-performance computation over huge volume of data. Compared to common processors, field-programable gate arrays (FPGAs) can boost the computation performance with a streaming computation architecture and the support for application-specific number representation. With hardware support for reconfigurable number format and bit width, reduced precision can greatly decrease the area cost and I/O bandwidth of the design, thus multiplying the performance with concurrent processing cores on an FPGA. In this paper, we present a tool to determine the minimum number precision that still provides acceptable accuracy for seismic applications. By using the minimized number format, we implement core algorithms in seismic applications (the FK step in forward continued-based migration and 3D convolution in reverse time migration) on FPGA and show speedups ranging from 5 to 7 by including the transfer time to and from the processors. Provided sufficient bandwidth between CPU and FPGA, we show that a further increase to 48times; speedup is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.