Abstract
We present a novel deep learning-based algorithm to accelerate—through the use of Artificial Neural Networks (ANNs)—the convergence of Algebraic Multigrid (AMG) methods for the iterative solution of the linear systems of equations stemming from finite element discretizations of Partial Differential Equations (PDE). We show that ANNs can be successfully used to predict the strong connection parameter that enters in the construction of the sequence of increasingly smaller matrix problems standing at the basis of the AMG algorithm, so as to maximize the corresponding convergence factor of the AMG scheme. To demonstrate the practical capabilities of the proposed algorithm, which we call AMG-ANN, we consider the iterative solution of the algebraic system of equations stemming from finite element discretizations of two-dimensional model problems. First, we consider an elliptic equation with a highly heterogeneous diffusion coefficient and then a stationary Stokes problem. We train (off-line) our ANN with a rich dataset and present an in-depth analysis of the effects of tuning the strong threshold parameter on the convergence factor of the resulting AMG iterative scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.