Abstract
Purpose– The purpose of this paper is to propose multigrid methods in conjunction with explicit approximate inverses with various cycles strategies and comparison with the other smoothers.Design/methodology/approach– The main motive for the derivation of the various multigrid schemes lies in the efficiency of the multigrid methods as well as the explicit approximate inverses. The combination of the various multigrid cycles with the explicit approximate inverses as smoothers in conjunction with the dynamic over/under relaxation (DOUR) algorithm results in efficient schemes for solving large sparse linear systems derived from the discretization of partial differential equations (PDE).Findings– Application of the proposed multigrid methods on two-dimensional boundary value problems is discussed and numerical results are given concerning the convergence behavior and the convergence factors. The results are comparatively better than the V-cycle multigrid schemes presented in a recent report (Filelis-Papadopoulos and Gravvanis).Research limitations/implications– The limitations of the proposed scheme lie in the fact that the explicit finite difference approximate inverse matrix used as smoother in the multigrid method is a preconditioner for specific sparsity pattern. Further research is carried out in order to derive a generic explicit approximate inverse for any type of sparsity pattern.Originality/value– A novel smoother for the geometric multigrid method is proposed, based on optimized banded approximate inverse matrix preconditioner, the Richardson method in conjunction with the DOUR scheme, for solving large sparse linear systems derived from finite difference discretization of PDEs. Moreover, the applicability and convergence behavior of the proposed scheme is examined based on various cycles and comparative results are given against the damped Jacobi smoother.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.