Abstract
BackgroundDeep brain stimulation (DBS) has emerged as an important therapeutic intervention for neurological and neuropsychiatric disorders. After initial programming, clinicians are tasked with fine-tuning DBS parameters through repeated in-person clinic visits. We aimed to evaluate whether DBS patients achieve clinical benefit more rapidly by incorporating remote internet-based adjustment (RIBA) of stimulation parameters into the continuum of care.MethodsWe conducted a randomized controlled multicenter study (ClinicalTrails.gov NCT05269862) involving patients scheduled for de novo implantation with a DBS System to treat Parkinson’s Disease. Eligibility criteria included the ability to incorporate RIBA as part of routine follow-up care. Ninety-six patients were randomly assigned in a 1:1 ratio using automated allocation, blocked into groups of 4, allocation concealed, and no stratification. After surgery and initial configuration of stimulation parameters, optimization of DBS settings occurred in the clinic alone (IC) or with additional access to RIBA. The primary outcome assessed differences in the average time to achieve a one-point improvement on the Patient Global Impression of Change score between groups. Patients, caregivers, and outcome assessors were not blinded to group assignment. Most of the data collection took place in the patient’s home environment.ResultsAccess to RIBA reduces the time to symptom improvement, with patients reporting 15.1 days faster clinical benefit (after 39.1 (SD 3.3) days in the RIBA group (n = 48) and after 54.2 (SD 3.7) days in the IC group (n = 48)). None of the reported adverse events are related to RIBA.ConclusionsThis study demonstrates safety and efficacy of internet-based adjustment of DBS therapy, while providing clinical benefit earlier than in-clinic optimization of stimulation parameters by increasing patient access to therapy adjustment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have