Abstract

The natural process of fruit ripening is a combination of physiological, biochemical and molecular processes which can be activated or accelerated artificially by using different chemical agents. This study was carried out to examine the effects of three ripening process on the quality of avocado and mango fruits. Freshly unripe mango and avocado fruits were treated with calcium carbide powder, kerosene fumes and ripening in woven polypropylene bags. Calcium carbide treated fruits were stored for 48 hrs and all the samples were fully ripened except avocado fruit. The kerosene fumed fruits were stored for 24 hrs and then exposed to open air for another 24 hrs. Fruits ripened in empty plastic rice got ripened within 4 and 5 days for mango and avocado, respectively. The fruits were then analyzed for their physicochemical properties and sulphide and sulphate distributions using standard methods. The result revealed a decrease in TTA, pH, carbohydrate and vitamin C contents on ripening. On the other hand, moisture and TSS was observed to increase. However, accelerated ripening had no significant (p<0.05) effect on the moisture and vitamin C content of the fruits. Mango samples treated with calcium carbide recorded higher acidity (0.92%) and low pH (3.08) than those treated with kerosene (0.29% and 3.71%, respectively). Sulphide and sulphate distribution of avocado was found to increase after accelerated ripening with kerosene fumes. A decrease for sulphate (outer distribution) and increase for sulphate (inner) and sulphide (outer) was observed for mango fruits. The results also showed that ripening in woven polypropylene had no significant (p<0.05) effect on the TTA of the fruits while pH, moisture and TSS varied significantly (p<0.05) with fruit type. The use of calcium carbide for fruit ripening is not advisable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call