Abstract

Water and soil contamination has become unavoidable due to the enormous usage of pesticides in agriculture. Among the pesticides, monocrotophos (MCP), a popular and largely used pesticide, is extremely toxic to birds and humans, which is easily leached into the environment. Therefore, establishment of a green tactic to clean the environment from such hazard is very essential. Herein, we have developed a novel ternary nanocomposite, Ag3PO4/polyaniline@g-C3N4 with enhanced electron-hole separation efficiency, a condition which is very much required for any photocatalyst. The nanocomposite was one-pot synthesized by a simple and economical hydrothermal method. The strategically modulated band gaps of the nanocomposite help harvest the sunlight efficaciously for the robust degradation of MCP (99.6%). It has been found that the active species involved in the photo-cleaning process are OH· and O2·-. A suitable reaction mechanism has been proposed and discussed. Analytical techniques, which include energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), elemental mapping analysis, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), and X-ray diffraction (XRD), were used to characterize the synthesized nanocomposite. This nano-photocatalyst, which is simple, stable, and reusable, certainly has potential applications in soil contamination remediation, sewage treatments, and other environment decontaminations. Also, a study of this kind offers more strategic plans for the production of clean energy (hydrogen) by solar-driven water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call