Abstract

A glassy carbon electrode modification by a novel ternary nanocomposite of advantageously united ceria, polypyrrole, and graphitic carbon nitride (CeO2/Ppy@g-C3N4) is reported here. It can be used to tailor the sensor surface for the electrochemical detection of nanomolar-level quinol (Qnl), a chemical widely used as a developing agent in photography and lithography, as a cosmetic, and as an antioxidant in rubber and food industries. The occupational exposure of Qnl may occur by inhalation or dermal contact, leading to lot of health hazards. The synthesized nanocomposite was characterized by various analytical techniques such as UV–Vis, Fourier transformed infrared (FTIR), X-ray powder diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, selected area electron diffraction, and elemental mapping analyses. The oxidation current of Qnl is linear to its concentration in the range of 0.01–260 μM and the lowest detection and quantification limit are found to be 1.5 nM and 0.004 μM, respectively, with a sensitivity of 283.33 μA mM−1 cm−2. The performance of the modified electrode was compared with those of high-performance liquid chromatography, which indicates that the proposed sensor can be used as an effective and reliable platform for nano-molar detection of Qnl in various environmental and biological fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.