Abstract

Designing high entropy alloys (HEAs) from a large compositional space is challenging. The design process is accelerated by integrating computational techniques. The current study developed a framework for the accelerated identification of phases in HEAs by integrating high throughput calculations and machine learning (ML). The 19968 composition information was generated using high throughput CALculation of PHAse Diagrams (CALPHAD) calculations and used as a dataset for the machine learning algorithms. The Synthetic Minority Over-sampling Technique (SMOTE) makes unbiased data, and multiple machine learning algorithms are trained and compared. The Support Vector Machine (SVM) and Artificial Neural Network (NN) show test accuracy of ∼99%. The trained algorithm was used to predict phases in ternary, quaternary and quinary systems. The experimental comparison confirms that the algorithms successfully predicted the phase transitions in HEAs with respect to varying compositions. The developed framework can be adopted for designing new materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.