Abstract

Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography-mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.