Abstract

ABSTRACTTrain localization is an essential technology for effective train control. Currently, train localization primarily relies on using track circuits and balises, which are placed along the track to provide precise location information. However, balises have to be placed at intervals of a few kilometers. This increases maintenance costs and makes them vulnerable to being damaged by ice blocks falling from moving trains. Therefore, in this study, we propose a method for absolute train localization based on structure detection and identification using a 1D light detection and ranging (LiDAR) sensor to reduce the number of balises. Structure identification is achieved using scan matching. In the experiments using a car, the proposed method achieved an identification success rate of over 90%. We also considered the effect of raindrops by filtering the measurement data. By testing and analyzing the identification results, we successfully reduced all cases of misidentification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.