Abstract
As an important biomarker for diagnostics and therapeutics of various diseases, the low-cost, quantitative detection method of microRNAs (miRNAs) has recently caught broad attention. However, their small size and low abundance still derive challenges to quantification detection. In this study, we developed an ultrasensitive and multiplexed surface plasmon resonance (SPR) biosensor for quantifying miRNAs without standard. We introduced the mass transport limitation (MTL) strategy for the absolute quantification of miRNAs. We first explore the mechanism of DNA capture and the condition for triggering MTL on the SPR biosensor. We demonstrated that probes of 22–25 nt in length with fewer influences of the secondary structure provide better triggering of MTL. For proof of concept studies, let-7a, miR-155 and miR-21 were selected as candidate targets. Based on the structure and kinetics analysis, we demonstrate the best capture probe efficiency, and this biosensor’s limit of detection (LOD) is 500 fM without any signal amplification. Furthermore, our biosensor achieves multiplex detection, which could detect three targets simultaneously. The quantitative results of miRNA indicated the great prospects of our biosensor in nucleic acid-related early diagnosis and biosensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.