Abstract

Food allergies are recognized as a growing public health concern, with an estimated 3% of adults and 6-8% of children affected by food allergy disorders. Hence, food allergen detection, labeling, and management have become significant priorities within the food industry, and there is an urgent requirement for reliable, sensitive, and user-friendly technologies to trace food allergens in food products. In this critical review, we provide a comprehensive overview of the principles and applications of surface plasmon resonance (SPR) biosensors in the identification and quantification of food allergens (milk, egg, peanut, and seafood), including fiber-optic surface plasmon resonance (FOSPR), surface plasmon resonance imaging (SPRI), localized surface plasmon resonance (LSPR), and transmission surface plasmon resonance (TSPR). Moreover, the characteristics and fitness-for-purpose of each reviewed SPR biosensor is discussed, and the potential of newly developed SPR biosensors for multi-allergen real-time detection in a complex food system is highlighted. Such SPR biosensors are also required to facilitate the reliable, high-throughput, and real-time detection of food allergens by the food control industry and food safety control officials to easily monitor cross-contamination during food processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.