Abstract
The multi-angle laser light scattering (MALLS) detection method was combined with reversed-phase high-performance liquid chromatography to analyze multimerization of basic fibroblast growth factor (bFGF) formed by oxidation of bFGF with air or with 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB). This analysis provided the absolute molecular mass and the mean square radius for each eluted protein fraction of each slice of the chromatogram. It was shown that depending on the oxidation conditions, bFGF forms different multimetric forms, from dimers to hexamers. It was found that these multimers have varied conformations of the same molecular mass, but different structure. Molecular mass and size analyses provided molecular conformation of the aggregates; the results indicated the formation of rod-like rigid structures. The MALLS analysis confirmed that, during oxidation, each bFGF monomer bound sequentially to form the extended multimer. The proposed scheme of bFGF oxidation with DTNB revealed that the difference in the aggregate structural forms was probably due either to the presence of covalently bound residues of nitrobenzoic acid in the products of oxidation, or to the participation of sulfhydryl groups in disulfide bond formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.