Abstract

Microresonator-based high-speed single-mode quantum cascade lasers are ideal candidates for on-chip optical data interconnection and high sensitivity gas sensing in the mid-infrared spectral range. In this paper, we propose a high frequency operation of single-mode doughnut-shaped microcavity quantum cascade laser at ∼4.6 µm. By leveraging compact micro-ring resonators and integrating with grounded coplanar waveguide transmission lines, we have greatly reduced the parasitics originating from both the device and wire bonding. In addition, a selective heat dissipation scheme was introduced to improve the thermal characteristics of the device by semi-insulating InP infill regrowth. The highest continuous wave operating temperature of the device reaches 288 K. A maximum −3 dB bandwidth of 11 GHz and a cut-off frequency exceeding 20 GHz in a microwave rectification technique are obtained. Benefiting from the notch at the short axis of the microcavity resonator, a highly customized far-field profile with an in-plane beam divergence angle of 2.4° is achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.