Abstract

Early auditory experience shapes the auditory spatial tuning of neurons in the barn owl's optic tectum in a frequency-dependent manner. We examined the basis for this adaptive plasticity in terms of changes in tuning for frequency-specific interaural time differences (ITDs) and level differences (ILDs), the dominant sound localization cues. We characterized broadband and narrowband ITD and ILD tuning in normal owls and in owls raised with an acoustic filtering device in one ear that caused frequency-dependent changes in sound timing and level. In normal owls, units were tuned to frequency-specific ITD and ILD values that matched those produced by sound sources located in their visual receptive fields. In contrast, in device-reared owls, ITD tuning at most sites was shifted from normal by approximately 55 microsec toward open-ear leading for 4 kHz stimuli and 15 microsec toward the opposite-ear leading for 8 kHz stimuli, reflecting the acoustic effects of the device. ILD tuning was shifted in the adaptive direction by approximately 3 dB for 4 kHz stimuli and 8 dB for 8 kHz stimuli, but these shifts were substantially smaller than expected based on the acoustic effects of the device. Most sites also exhibited conspicuously abnormal frequency-response functions, including a strong dependence on stimulus ITD and a reduction of normally robust responses to 6 kHz stimuli. The results demonstrate that the response properties of high-order auditory neurons in the optic tectum are adjusted during development to reflect the influence of frequency-specific features of the binaural localization cues experienced by the individual.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call