Abstract
The barn owl's optic tectum contains a map of auditory space that is based, in part, on a map of interaural time difference (ITD). Previous studies have shown that this ITD map is shaped by auditory experience. In this study, we investigated whether the plasticity responsible for experience-induced changes in ITD tuning in the tectum occurs within the tectum itself or at an earlier stage in the auditory pathway. We altered auditory experience in young owls by implanting an acoustic filtering device in one ear that caused frequency-dependent changes in sound timing and level. We analyzed the representation of ITD in normal and device-reared owls in two nuclei in the ascending pathway: the external nucleus of the inferior colliculus (ICX), the primary source of ascending auditory input to the tectum, and the lateral shell of the central nucleus of the inferior colliculus (ICCls), the primary source of input to the ICX. In the ICX, device rearing caused adaptive, frequency-dependent changes in ITD tuning, as well as changes in frequency tuning. These changes in tuning were similar to changes that occurred in the optic tectum in the same owls. In contrast, in the ICCls, tuning for ITD and frequency was unaffected by device rearing. The data indicate that plasticity at the level of the ICX is largely responsible for the adaptive adjustments in ITD tuning and frequency tuning that are observed in the optic tecta of owls raised with abnormal auditory experience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.