Abstract

Residue-level potentials of mean force were widely used for protein backbone refinements to avoid simultaneous sampling of side-chain conformations. The interaction energy between the reduced side chains and backbone atoms was not considered explicitly. In this study, we developed novel methods to calculate the residue-atom interaction energy in combination with atomic and residue-level terms. The parameters were optimized step by step to remove the overcounting or overlap problem between different energy terms. The mixing energy functions were then used to evaluate the generated backbone conformations at the initial sampling stage of protein loop modeling (OSCAR-loop), including the interaction energy between the reduced loop residues and full atoms of the protein framework. The accuracies of top-ranked decoys were 1.18 and 2.81 Å for 8-residue and 12-residue loops, respectively. We then selected diverse decoys for side-chain modeling, backbone refinement, and energy minimization. The procedure was repeated multiple times to select one prediction with the lowest energy. Consequently, we obtained an accuracy of 0.74 Å for a prevailing test set of 12-residue loops, compared with >1.4 Å reported by other researchers. The OSCAR-loop was also effective for modeling the H3 loops of antibody complementary determining regions (CDRs) in the crystal environment. The prediction accuracy of OSCAR-loop (1.74 Å) was better than the accuracy of the Rosetta NGK method (3.11 Å) or those achieved by deep learning methods (>2.2 Å) for the CDRH3 loops of 49 targets in the Rosetta antibody benchmark. The performance of OSCAR-loop in a model environment was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.