Abstract

Processivity factors tether the catalytic subunits of DNA polymerases to DNA so that continuous synthesis of long DNA strands is possible. The human cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer intermediate in structure between monomeric herpes simplex virus UL42, which binds DNA directly via a basic surface, and the trimeric sliding clamp PCNA, which encircles DNA. To investigate how UL44 interacts with DNA, calculations were performed in which a 12 bp DNA oligonucleotide was docked to UL44. The calculations suggested that UL44 encircles DNA, which interacts with basic residues both within the cavity of the C clamp and in flexible loops of UL44 that complete the "circle." The results of mutational and crosslinking studies were consistent with this model. Thus, UL44 is a "hybrid" of UL42 and PCNA: its structure is intermediate between the two and its mode of interaction with DNA has elements of both.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.