Abstract

By applying the infinite-mass boundary condition, we analytically calculate the confined states and the corresponding wave functions of AA-stacked bilayer graphene (BLG) quantum dots (QDs) in the presence of an uniform magnetic field B. It is found that the energy spectrum shows two set of levels, which are the double copies of the energy spectrum for single layer graphene, shifted up–down by and , respectively. However, the obtained spectrum exhibits different symmetries between the electron and hole states as well as the intervalley symmetries. It is noticed that, the applied magnetic field breaks all symmetries, except one related to the intervalley electron–hole symmetry, i.e. . Two different regimes of confinement are found: the first one is due to the infinite-mass barrier at weak B and the second is dominated by the magnetic field as long as B is large. We numerically investigated the basics features of the energy spectrum to show the main similarities and differences with respect to monolayer graphene, AB-stacked BLG and semiconductor QDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call