Abstract

V-N microalloying treatment is an important way to improve the service performance of non-quenched and tempered ship plate steel. Herein, the influence of V(C, N) on the evolution of microstructure and improvement of mechanical properties was studied. In addition, the relationship between microstructure and mechanical properties of V-N microalloyed high strength ship plate steel was revealed. The results showed that the composite addition of V and N not only formed a fine dispersed precipitated phase, but more importantly, significantly refined the ferrite/pearlite microstructure, promoted the formation of intragranular acicular ferrite, increased the proportion of high angle grain boundaries, and decreased the kernel average misorientation value. The optimization of microstructure brought about by V-N microalloying achieved synchronous improvement of strength and cryogenic toughness. The impact energy of V-N microalloying ship plate steel increased from 97 J of V-N-free ship plate steel to 239 J at −40 °C, and the impact fracture mode changed from brittle quasi-cleavage fracture to microvoid coalescence fracture with a large number of equiaxial dimples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call