Abstract

Fused granular fabrication (FGF) is used in industrial applications to manufacture complex parts in a short time frame and with reduced costs. Recently, the overprinting of continuous fibre-reinforced laminates has been discussed to produce high-performance, functional structures. A hybrid process combining FGF with Automated Fibre Placement (AFP) was developed to implement this approach, where an additively manufactured structure is bonded in situ onto a thermoplastic laminate. However, this combination places great demands on process control, especially in the first printing layer. When 3D printing onto a laminate, the height of the first printed layer is decisive to the shear strength of the bonding. Manufacturing-induced surface defects of a laminate, like thermal warpage, gaps, and tape overlaps, can result in deviations from the ideal geometry and thus impair the bonding strength when left uncompensated. This study, therefore, proposes a novel process flow that uses a 3D scan of a laminate to adjust the geometry of the additively manufactured structure to achieve a constant layer height in the 3D print and, thus, constant mechanical properties. For the above-listed surface defects, only thermal warpage was found to have a significant effect on the bonding strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call