Abstract
This paper reports on an experimental investigation that used a full factorial design to study the main effects and the interaction effect of layer thickness and compaction thickness on the green part density in the binder jetting additive manufacturing of silicon carbide. A two-variable, two-level full factorial design was employed. The results show that the green part density was higher at the low level of layer thickness and at the high level of compaction thickness. These results can be useful in selecting the values of printing variables, enabling the fabrication of green parts with a desirable density that is crucial for advanced ceramic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.