Abstract
Cycle sets are known to give non-degenerate unitary solutions of the Yang--Baxter equation and linear cycle sets are enriched versions of these algebraic systems. The paper explores the recently developed cohomology and extension theory for linear cycle sets. We derive a four term exact sequence relating 1-cocycles, second cohomology and certain groups of automorphisms arising from central extensions of linear cycle sets. This is an analogue of a similar exact sequence for group extensions known due to Wells. We also compare the exact sequence for linear cycle sets with that for their underlying abelian groups and discuss generalities on dynamical 2-cocycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.