Abstract

ABSTRACTWe introduce non-degenerate solutions of the Yang–Baxter equation in the setting of symmetric monoidal categories. Our theory includes non-degenerate set-theoretical solutions as basic examples. However, infinite families of non-degenerate solutions (that are not of set-theoretical type) appear. As in the classical theory of Etingof, Schedler, and Soloviev, non-degenerate solutions are classified in terms of invertible 1-cocycles. Braces and matched pairs of cocommutative Hopf algebras (or braiding operators) are also generalized to the context of symmetric monoidal categories and turn out to be equivalent to invertible 1-cocycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.