Abstract
The multi-label electrocardiogram (ECG) classification is to automatically predict a set of concurrent cardiac abnormalities in an ECG record, which is significant for clinical diagnosis. Modeling the cardiac abnormality dependencies is the key to improving classification performance. To capture the dependencies, we proposed a multi-label classification method based on the weighted graph attention networks. In the study, a graph taking each class as a node was mapped and the class dependencies were represented by the weights of graph edges. A novel weights generation method was proposed by combining the self-attentional weights and the prior learned co-occurrence knowledge of classes. The algorithm was evaluated on the dataset of the Hefei Hi-tech Cup ECG Intelligent Competition for 34 kinds of ECG abnormalities classification. And the micro-f 1 and the macro-f 1 of cross validation respectively were 91.45% and 44.48%. The experiment results show that the proposed method can model class dependencies and improve classification performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.