Abstract

The formation and control of stable multiphase space hole structures and the associated Bernstein–Greene–Kruskal modes in trapped pure ion plasmas driven by an oscillating, chirped frequency perturbation are considered. The holes are formed by passing kinetic bounce resonances ωd=nπu∕L in the system, u and L are the longitudinal velocity of the plasma species and the length of the trap, and n is the multiplicity of the resonance (the number of the phase space holes). An adiabatic, quasi-one-dimensional water bag model of this excitation for an initially flat-top distribution of the ions in the trap is suggested, based on the isomorphism with a related problem in infinite quasineutral plasmas. A multiwater bag approach allows us to generalize the theory to other initial distributions. Numerical simulations yield a very good agreement with the theory until the coherent phase space structure is destroyed due to the resonance overlap when the decreasing driving frequency passes a critical value estimated within the water bag theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.