Abstract

The need for reliable models that take into account the nonlinear kinetics of dopants is nowadays of paramount importance, particularly with the physical dimensions of electron devices shrinking to the deep nanoscale range and the development of emerging nanoionic systems such as the memristor. In this paper, we present a novel nonlinear dopant drift model that resolves the boundary issues existing in previously reported models that can be easily adjusted to match the dynamics of distinct memristive elements. With the aid of this model, we examine switching mechanisms, current-voltage characteristics, and the collective ion transport in two terminal memristive devices, providing new insights on memristive behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.