Abstract

Real-time measurement of soil water pressure has been recognized as an essential part of investigating water flow in unsaturated soils. Tensiometry, amongst different measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes development of a vacuum-refilled tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by fixing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuum-refilling assembly into its design. The assembly allows for more efficient replacement of diffused air into the ceramic cup and reservoir with water. The new tensiometer is designed to withstand both negative and positive water pressure of up to almost one bar. In addition, the response time of the tensiometer to a change in negative water pressure for its working range (≥ -80 kPa) is very quick, in the order of seconds and one minute at most. The long-term performance of the new tensiometer is evaluated through a five-month monitoring program in the laboratory, simulating cyclic wetting and drying in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.