Abstract

The Cache plays an important role in computer architecture by reducing the access time of the processor and improving its performance. The hardware design of the Cache is complex and it is challenging to verify its functions, so the traditional Verilog-based verification method is no longer applicable. This paper proposes a comprehensive and efficient verification testbench based on the SystemVerilog language and universal verification methodology (UVM) for an instruction Cache (I-Cache) controller. Corresponding testcases are designed for each feature of the I-Cache controller and automatically executed using a python script on an electronic design automation (EDA) tool. After simulating a large number of testcases, the statistics reveal that the module’s code coverage is 99.13%. Additionally, both the function coverage and the assertion coverage of the module reach 100%. Our results demonstrate that these coverage metrics meet the requirements and ensure the thoroughness of function verification. Furthermore, the established verification testbench exhibits excellent scalability and reusability, making it easily applicable to higher-level verification scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.