Abstract
Energy nonlinearity and resolution in liquid scintillator (LS) detectors are correlated and particle-dependent. A unified energy response model for liquid scintillator detectors has been presented in details. This model has advanced a data-driven approach to calibrate the particle-dependent energy response, using both the monoenergetic gamma -ray sources and the continuous beta spectra of ^textrm{12}textrm{B} and Michel e^- induced by cosmic muons. Monte Carlo studies have demonstrated the effectiveness and robustness of the proposed model, in particular, the positron energy resolution can be extracted in the absence of positron sources. This work will provide a feasible approach of simultaneous calibration of energy nonlinearity and resolution for the running and future LS detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.