Abstract

Development and evaluation of a large-volume multi-element digital-signal-processing (DSP)-based deuterated (C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> D <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> ) liquid scintillator array for the study of reactions involving neutrons without the need for measurement of neutron time-of-flight (ToF) is described. In-beam testing was conducted at the University of Notre Dame (UND) 10 MV FN tandem Van de Graaff accelerator using a deuteron beam at E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</sub> =16.0 MeV. The energy response and detector efficiency of 100 mm dia. ×; 150 mm long cylindrical deuterated liquid scintillator (Eljen 315) detectors was determined in the range E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> =4.8 to 8.7 MeV and E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> =6.8 to 21.2 MeV, respectively. In addition, we determined that optimized digital pulse-shape discrimination (DPSD) in liquid scintillator detectors using enhanced liquid (Eljen 315MOD) and other methods can yield improved recoil-particle tagging. As we demonstrate, this is particularly important in deuterated scintillators at neutron energies above 15 MeV. This is especially advantageous for study of nuclear reactions involving radioactive beams, since these often have large, positive reaction Q values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.