Abstract

Ordinal data are common in many data mining and machine learning tasks. Compared to nominal data, the possible values (also called categories interchangeably) of an ordinal attribute are naturally ordered. Nevertheless, since the data values are not quantitative, the distance between two categories of an ordinal attribute is generally not well defined, which surely has a serious impact on the result of the quantitative analysis if an inappropriate distance metric is utilized. From the practical perspective, ordinal-and-nominal-attribute categorical data, i.e., categorical data associated with a mixture of nominal and ordinal attributes, is common, but the distance metric for such data has yet to be well explored in the literature. In this paper, within the framework of clustering analysis, we therefore first propose an entropy-based distance metric for ordinal attributes, which exploits the underlying order information among categories of an ordinal attribute for the distance measurement. Then, we generalize this distance metric and propose a unified one accordingly, which is applicable to ordinal-and-nominal-attribute categorical data. Compared with the existing metrics proposed for categorical data, the proposed metric is simple to use and nonparametric. More importantly, it reasonably exploits the underlying order information of ordinal attributes and statistical information of nominal attributes for distance measurement. Extensive experiments show that the proposed metric outperforms the existing counterparts on both the real and benchmark data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.