Abstract

The success of categorical data clustering generally much relies on the distance metric that measures the dissimilarity degree between two objects. However, most of the existing clustering methods treat the two categorical subtypes, i.e., nominal and ordinal attributes, in the same way when calculating the dissimilarity without considering the relative order information of the ordinal values. Moreover, there would exist interdependence among the nominal and ordinal attributes, which is worth exploring for indicating the dissimilarity. This paper will therefore study the intrinsic difference and connection of nominal and ordinal attribute values from a perspective akin to the graph. Accordingly, we propose a novel distance metric to measure the intra-attribute distances of nominal and ordinal attributes in a unified way, meanwhile preserving the order relationship among ordinal values. Subsequently, we propose a new clustering algorithm to make the learning of intra-attribute distance weights and partitions of data objects into a single learning paradigm rather than two separate steps, whereby circumventing a suboptimal solution. Experiments show the efficacy of the proposed algorithm in comparison with the existing counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.