Abstract

This paper presents a variety of different Security Constrained Optimal Power Flow formulations addressing four power system operation and planning problems: (a) forecast uncertainty of Renewable Energy Sources (RES) in-feed and load, (b) security criteria based on contingency risk, (c) corrective control offered through High Voltage Direct Current (HVDC) lines and flexible demand, (d) operation of multi-area systems with limited data exchange. A comprehensive probabilistic Security Constrained Optimal Power Flow (SCOPF) framework based on scenario-based methodologies is presented. This approach provides a-priori guarantees regarding the probability of the constraint satisfaction. In this paper, we show how HVDC lines, flexible demand, and novel risk-based operational paradigms can be used to handle outage uncertainty and the fluctuating in-feed from RES. Our analysis is extended by introducing a distributed probabilistic SCOPF algorithm for multi-area systems involving different levels of data exchange. The applicability of the methods is demonstrated on the three-area Reliability Test System (RTS-96). Results are compared based on operating costs and maximum wind power penetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.