Abstract

ABSTRACT In this paper, a two-stage stochastic mathematical model is developed for an asset protection routing problem under a wildfire. The main aim of this study is to reduce the negative impact of a wildfire. Some parameters, such as travel and service times, obtaining profit by protecting an asset, and upper bounds of time windows, are considered as stochastic parameters. Generating proper scenarios for uncertain parameters has a large impact on the accuracy of the obtained solutions. Therefore, artificial neural networks are employed to extract possible scenarios according to previous actual wildfire events. The problem cannot be solved by exact solvers for large instances, so two matheuristic algorithms are proposed in this study to solve the problem in a reasonable time. In the first algorithm, a set of feasible routes is generated based on a heuristic approach, then a route-based mathematical model is used to obtain the final solution. Also, another matheuristic algorithm based on adaptive large neighbourhood search (ALNS) is proposed. In this algorithm, routing decisions are determined using the ALNS algorithm while other decisions are achieved by solving an intermediate mathematical model. The numerical analysis confirms the efficiency of both proposed algorithms; however, the first algorithm performs more efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call