Abstract

The concept of green manufacturing emphasizes the importance of product disassembly in achieving energy-efficient recycling and remanufacturing operations. Disassembly line balancing (DLB) is a critical component of the product disassembly process, wherein a set of tasks must be allocated to workstations for disassembly. This study proposes a multi-objective DLB model that aims to minimize multiple conflicting objectives simultaneously including idle rate, smoothness, labor cost, and energy consumption. A key innovation of this study involves the creation of a tailored adaptive large neighborhood search (ALNS) algorithm which is one of the first studies in the literature on product disassembly algorithms. The developed ALNS employs efficient construction and destruction heuristics to solve the proposed multi-objective DLB problem. The ALNS algorithm aims to destroy and repair solutions effectively, while a local search procedure helps it escape from local optimum solutions. The provided DLB model is effectively solved by applying the proposed ALNS algorithm to the disassembly process of a turbine reducer. The obtained results from this application serve as a compelling demonstration of the efficiency and effectiveness of the proposed approach. Furthermore, comparisons conducted with various state-of-the-art algorithms using small and large instance sets consistently highlight the superiority of the proposed ALNS approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.