Abstract

Most models of volcanic ash flows assume that the flow is either dilute or dense, with dynamics dominated by fluid turbulence or particle collisions, respectively. However, most naturally occurring flows feature both of these end members. To this end, a two-layer model for the formation of dense pyroclastic basal flows from dilute, collapsing volcanic eruption columns is presented. Depth-averaged, constant temperature, continuum conservation equations to describe the collapsing dilute current are derived. A dense basal flow is then considered to form at the base of this current owing to sedimentation of particles and is modelled as a granular avalanche of constant density. We present results which show that the two-layer model can predict much larger maximum runouts than would be expected from single-layer models, based on either dilute or dense conditions, as the dilute surge can outrun the dense granular flow, or vice versa, depending on conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call