Abstract

A two layer model for the formation of dense pyroclastic basal flows from dilute, collapsing volcanic eruption columns is presented. The collapsing dilute current is described by depth averaged, isothermal, continuum conservation equations. The dense basal flow is modelled as a granular avalanche of constant density. Simulations demonstrate that pyroclastic flow formation and behavior is dependent upon slope conditions when the dilute part of the current has lost most of its mass. The dilute current runout increases with decreasing particle size and increasing initial column height. If the dilute current has transferred its mass to the dense basal flow on volcanic slopes with inclination angle greater than the friction angle of the basal flow, then the basal flow will continue to propagate until frictional forces bring it to rest. If the dilute current terminates on lower angled slopes, frictional forces dominate the basal flow preventing further front propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.