Abstract

A time-to-digital-converter-based CMOS smart temperature sensor without a voltage/current analog-to-digital converter (ADC) or bandgap reference is proposed for high-accuracy portable applications. Conventional smart temperature sensors rely on voltage/current ADCs for digital output code conversion. For the purpose of cost reduction and power savings, the proposed smart temperature sensor first generates a pulse with a width proportional to the measured temperature. Then, a cyclic time-to-digital converter is utilized to convert the pulse into a corresponding digital code. The test chips have an extremely small area of 0.175 mm/sup 2/ and were fabricated in the TSMC CMOS 0.35-/spl mu/m 2P4M process. Due to the excellent linearity of the digital output, the achieved measurement error is merely -0.7/spl sim/+0.9/spl deg/C after two point calibration, but without any curvature correction or dynamic offset cancellation. The effective resolution is better than 0.16/spl deg/C, and the power consumption is under 10 /spl mu/W at a sample rate of 2 samples/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.