Abstract

In this paper, we introduce a threshold stochastic volatility model with explanatory variables. The Bayesian method is considered in estimating the parameters of the proposed model via the Markov chain Monte Carlo (MCMC) algorithm. Gibbs sampling and Metropolis–Hastings sampling methods are used for drawing the posterior samples of the parameters and the latent variables. In the simulation study, the accuracy of the MCMC algorithm, the sensitivity of the algorithm for model assumptions, and the robustness of the posterior distribution under different priors are considered. Simulation results indicate that our MCMC algorithm converges fast and that the posterior distribution is robust under different priors and model assumptions. A real data example was analyzed to explain the asymmetric behavior of stock markets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.